Package: PINstimation 0.1.3.9000
PINstimation: Estimation of the Probability of Informed Trading
A comprehensive bundle of utilities for the estimation of probability of informed trading models: original PIN in Easley and O'Hara (1992) and Easley et al. (1996); Multilayer PIN (MPIN) in Ersan (2016); Adjusted PIN (AdjPIN) in Duarte and Young (2009); and volume-synchronized PIN (VPIN) in Easley et al. (2011, 2012). Implementations of various estimation methods suggested in the literature are included. Additional compelling features comprise posterior probabilities, an implementation of an expectation-maximization (EM) algorithm, and PIN decomposition into layers, and into bad/good components. Versatile data simulation tools, and trade classification algorithms are among the supplementary utilities. The package provides fast, compact, and precise utilities to tackle the sophisticated, error-prone, and time-consuming estimation procedure of informed trading, and this solely using the raw trade-level data.
Authors:
PINstimation_0.1.3.9000.tar.gz
PINstimation_0.1.3.9000.zip(r-4.5)PINstimation_0.1.3.9000.zip(r-4.4)PINstimation_0.1.3.9000.zip(r-4.3)
PINstimation_0.1.3.9000.tgz(r-4.4-any)PINstimation_0.1.3.9000.tgz(r-4.3-any)
PINstimation_0.1.3.9000.tar.gz(r-4.5-noble)PINstimation_0.1.3.9000.tar.gz(r-4.4-noble)
PINstimation_0.1.3.9000.tgz(r-4.4-emscripten)PINstimation_0.1.3.9000.tgz(r-4.3-emscripten)
PINstimation.pdf |PINstimation.html✨
PINstimation/json (API)
NEWS
# Install 'PINstimation' in R: |
install.packages('PINstimation', repos = c('https://monty-se.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/monty-se/pinstimation/issues
- dailytrades - Example of quarterly data
- hfdata - High-frequency trade-data
clustering-analysisexpectation-maximisation-algorithmhierarchical-clusteringinformation-asymmetrymarket-microstructuremaximum-likelihood-estimationmixture-distributionspoisson-distribution
Last updated 1 months agofrom:20ae09534e. Checks:OK: 1 NOTE: 6. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 21 2024 |
R-4.5-win | NOTE | Nov 21 2024 |
R-4.5-linux | NOTE | Nov 21 2024 |
R-4.4-win | NOTE | Nov 21 2024 |
R-4.4-mac | NOTE | Nov 21 2024 |
R-4.3-win | NOTE | Nov 21 2024 |
R-4.3-mac | NOTE | Nov 21 2024 |
Exports:adjpinaggregate_tradesclassify_tradesdetectlayers_edetectlayers_ecmdetectlayers_egfact_adjpinfact_mpinfact_pin_efact_pin_ehofact_pin_lkgeneratedata_adjpingeneratedata_mpinget_posteriorsgetSummaryinitials_adjpininitials_adjpin_clinitials_adjpin_rndinitials_mpininitials_pin_eainitials_pin_gwjinitials_pin_yzivpinmpin_ecmmpin_mlpinpin_bayespin_eapin_gwjpin_yzselectModelset_display_digitsshowvpin
Dependencies:base64encbslibcachemclicodacodetoolscpp11digestdplyrevaluatefansifastmapfontawesomefsfurrrfuturegenericsglobalsgluehighrhtmltoolsjquerylibjsonliteknitrlatticelifecyclelistenvmagrittrmemoisemimenloptrparallellypillarpkgconfigpurrrR6rappdirsrbibutilsRdpackrlangrmarkdownsassskellamstringistringrtibbletidyrtidyselecttinytexutf8vctrswithrxfunyaml
Get started
Rendered fromPINstimation.rmd
usingknitr::rmarkdown
on Nov 21 2024.Last update: 2024-10-22
Started: 2022-05-24
Parallel Processing
Rendered fromparallel_processing.rmd
usingknitr::rmarkdown
on Nov 21 2024.Last update: 2022-05-27
Started: 2022-05-24
Sample datasets
Rendered fromsample_datasets.rmd
usingknitr::rmarkdown
on Nov 21 2024.Last update: 2022-10-19
Started: 2022-10-19